Note

Facile syntheses of methyl 2-amino-2-deoxyglucopyranosides

TSUTOMU TSUCHIYA, TAKAYUKI USUI, TAKASHI KAMIYA, AND SUMIO UMEZAWA Institute of Bioorganic Chemistry, 1614 Ida, Nakahara-ku, Kawasaki 211 (Japan) (Received May 3rd, 1979; accepted for publication, May 31st, 1979)

Methyl 2-amino-2-deoxy-D-glucopyranosides are standard reference substances in sugar chemistry. They are not directly preparable from 2-amino-2-deoxy-D-glucose by the Fischer method but are obtainable via the N-acetyl¹ or N-benzyloxycarbonyl² derivatives. This behavior has been interpreted¹,² on the basis of repulsion by the charged amino group of the hydronium ion necessary for glycoside formation. Matsushima and Miyazaki³, however, have successfully prepared, albeit in low yield, these glycosides by the Fischer method, namely, by boiling a methanolic solution of 2-amino-2-deoxy-D-glucose in the presence of a cation-exchange resin. Morgan and Neuberger⁴ have also reported the preparation of methyl 2-amino-2-deoxy-D-glucofuranosides by a similar procedure. In this paper, we describe another variant of the Fischer glycosidation. The synthesis involves treatment of 2-amino-2-deoxy-D-glucose with a strong cation-exchange resin (Amberlite IR-120, H⁺ form) in methanol at 100° in a sealed tube.

If the reaction is performed in boiling methanol, the products consist mainly of the α - and β -furanosides, as reported by Morgan and Neuberger⁴. However, when the reaction temperature is raised to 80–90°, the furanosides formed initially are gradually converted into α and β pyranosides. This conversion was established by inspection of the products after separation with Dowex-1 resin (see later). When the reaction was effected for 9 h at 100°, the best yields of pyranosides [58 and 22% for α - and β -D-glucopyranosides (1 and 2)] were obtained. The α -D-glucoside (1) was identical with the compound prepared by the method of Neuberger and Pitt Rivers². When the reaction was performed at 120°, the yields of glucosides decreased and unidentified by-products were formed.

It may be concluded that, for the preparation of methyl 2-amino-2-deoxy- α -D-glucopyranoside (1) by the Fischer method in the presence of Amberlite IR-120 (H⁺ form), it is only necessary to perform the reaction at 100°.

Separation of the α and β glucosides formed was performed by column chromatography on Dowex-1 (OH form) resin as reported by Matsushima *et al.*⁵ and Austin *et al.*⁶. For isolation of the α glucoside (1), however, use of a carboxylic-type resin (Amberlite CG-50) was found to be more convenient.

268 NOTE

The foregoing procedure was applied for the preparation of methyl 2-deoxy-2-methylamino-α-L-glucopyranoside (3). 2-Deoxy-2-methylamino-L-glucose⁷, which has been prepared by acidic hydrolysis of dihydrostreptomycin, was similarly treated to give 3 in 51% yield.

EXPERIMENTAL

Preparation of resin. — Commercial Amberlite CG-120 resin (200-400 mesh) was conventionally treated alternately with 2M hydrochloric acid and 2M sodium hydroxide. The H⁺ form resin was washed with methanol several times, kept in methanol overnight, filtered, and heated for 3 h at 60° under diminished pressure to constant weight.

Methyl 2-amino-2-deoxy-α- and -β-D-glucopyranoside (1 and 2). — Amberlite CG-120 (H⁺) resin (4.6 g, 200-400 mesh) and dry methanol (\sim 20 mL) were placed in a 50-mL glass pressure-bottle (Taiatsu Glass Industry Co. Ltd., Tokyo) with a stirrer bar. The system was evacuated, and methanol was added to increase the volume to 25 mL. 2-Amino-2-deoxy-D-glucose hydrochloride (500 mg) was added, the bottle was heated to 50°, stoppered well, and the mixture was stirred magnetically in an oil-bath maintained for 9 h at 100°. The mixture was filtered and the resin washed with methanol and methanolic ammonia [1:14 (v/v) commercial 28% ammonia-methanol]. Evaporation of the eluate gave a colorless syrup (syrup A, 475 mg). An aqueous solution (2 mL) of this syrup was charged onto a column of Dowex-1 X2 (OH⁻) (100 mL), which was developed with carbon dioxide-free water, and the elution was monitored by t.l.c. on silica gel with 2:3:1.5 chloroformmethanol-17% ammonium hydroxide containing 1% of ammonium chloride. Minor by-products were eluted (70–90 mL fractions, 30 mg, R_F 0.6–0.7), followed by 1 (92-110 mL fractions, 290 mg, R_F 0.49) with slight contamination by a by-product, and then 2 (115-135 mL fractions, 98 mg, 22%, R_F 0.45) was eluted. The α isomer (1) was recrystallized from ethanol to give needles; yield 233 mg (52%), m.p. 157–160°, $\lceil \alpha \rceil_D^{25} + 154^\circ$ (c 1, water); lit. m.p. 155-159°, $\lceil \alpha \rceil_D + 159.8^\circ$ (c 1, water); H-n.m.r. data (D₂O): δ 2.75 (q, 1 H, J 3.5 and 10 Hz, H-2), 4.78 (d, 1 H, J 3.5 Hz, H-1).

Anal. Calc. for $C_7H_{15}NO_5$: C, 43.51; H, 7.83; N, 7.25. Found: C, 43.76; H, 7.64; N, 7.18.

The β anomer (2) was a syrup, $[\alpha]_D^{25}$ -36° (c 1.3, water); ¹H-n.m.r. data (D₂O): δ 2.60 (unresolved t, 1 H, J 9 Hz, H-2; the hydrochloride: δ 3.04, q, J 8.5 and 10 Hz), 4.3 (d, 1 H, J 8.5 Hz, H-1).

Anal. Calc. for $C_7H_{15}NO_5$: C, 43.51; H, 7.83; N, 7.25. Found: C, 43.41; H, 7.91; N, 6.95.

The hydrochloride of 2 had m.p. 192–194° (dec.), $[\alpha]_D^{25}$ –27° (c 1.1, water); lit. 6 m.p. 191–192°, $[\alpha]_D$ –24° (water) (ref. 2).

Separation of 1 on Amberlite CG-50 resin. — The syrup A (950 mg) just described was charged onto a column of Amberlite CG-50 resin (220 mL, 100-200 mesh) that was developed with 5mm ammonium hydroxide. The resin used was prepared by

NOTE 269

thoroughly washing the resin (NH₄⁺ form) with 5mm ammonium hydroxide. The β anomer (2) was eluted in the 170–210 mL fractions (260 mg), with contamination by side-products, and then the pure α anomer (1) (230–430 mL, 540 mg) was eluted. On seeding, 1 gradually crystallized, and the solid was recrystallized from ethanol; yield 522 mg (58%), $[\alpha]_D^{25} + 155^{\circ}$ (c 1, water).

Methyl 2-deoxy-2-methylamino- α -L-glucopyranoside (3). — A mixture of 2-deoxy-2-methylamino-L-glucose hydrochloride⁷ (100 mg), Amberlite CG-120 (H⁺) (0.8 g), and dry methanol (5 mL) in a pressure tube was treated as described for 1. The syrup (corresponding to syrup A) obtained was chromatographed on a column of Amberlite CG-50 resin (30 mL, equilibrated with 5mm ammonium hydroxide). Elution of products with 0.005 \rightarrow 0.1m ammonium hydroxide (linear gradient) gave 3 in the 15–54-mL portion; syrup, 46 mg (51%), $[\alpha]_D^{25}$ –163° (c 1, water); ¹H-n.m.r. data (D₂O): δ 2.40 (s, 3 H, NCH₃), 2.58 (q, 1 H, J 3.5 and 10.5 Hz, H-2), 3.44 (s, 3 H, OCH₃), 4.92 (d, 1 H, J 3.5 Hz, H-1).

The hydrochloride of 3 (recrystallized from aqueous acetone) had m.p. 247–249° (dec.), $[\alpha]_D^{25}$ –143° (c 1, water). The hydrochloride of the D enantiomer⁸ of 3 has m.p. 247° (dec.), $[\alpha]_D$ + 128° (c 1, water)].

Anal. Calc. for $C_8H_{17}NO_5 \cdot HCl$: C, 39.43; H, 7.03; N, 5.75; Cl, 14.55. Found: C, 39.19; H, 7.15; N, 5.58; Cl, 14.35.

ACKNOWLEDGMENT

We are grateful to Prof. H. Umezawa, Institute of Microbial Chemistry, for his support and encouragement.

REFERENCES

- 1 R. C. G. MOGGRIDGE AND A. NEUBERGER, J. Chem. Soc., (1938) 745-750.
- 2 A. NEUBERGER AND R. PITT RIVERS, J. Chem. Soc., (1939) 122-126.
- 3 Y. Matsushima and T. Miyazaki, Bull. Chem. Soc. Jpn., 38 (1965) 1325-1326.
- 4 D. M. L. MORGAN AND A. NEUBERGER, Carbohydr. Res., 53 (1977) 167-175.
- 5 Y. MATSUSHIMA, T. MIYAZAKI, AND J. T. PARK, J. Biochem. (Tokyo), 54 (1963) 109-110.
- 6 P. W. Austin, F. E. Hardy, J. G. Buchanan, and J. Baddiley, J. Chem. Soc., (1963) 5350-5353.
- 7 F. A. KUEHL, JR., E. H. FLYNN, F. W. HOLLY, R. MOZINGO, AND K. FOLKERS, J. Am. Chem. Soc., 68 (1946) 536.
- 8 F. MICHEL AND E. MICHAELIS, Chem. Ber., 96 (1963) 1959-1964.